OS Virtualization

e Part 1: OS Virtualization
¢ Part 2: Fair share allocation

¢ Part 3: Docker and linux containers

University of
Massachusetts | CS677: Distributed OS Lec. 09
Ambherst
1
Paravirtualization
True virtualization Paravirtualization
K—/% /—/%
o O] .. [0 O,
. . 0 sensitive - . to hypervisor
Unmodified Windows i i Modified Linux
~ instruction call
s ~V
Type 1 hypervisor } i Microkernel }

Hardware

* Both type 1 and 2 hypervisors work on unmodified OS
e Paravirtualization: modify OS kernel to replace all sensitive instructions with hypercalls
— OS behaves like a user program making system calls

— Hypervisor executes the privileged operation invoked by hypercall.

University of
Massachusetts | CS677: Distributed OS Lec. 07
Ambherst

Xen Hypervisor
e Linux Type 1 hypervisor with no special hardware support
* Requires modified kernel, but can run unmodified apps

e Dom-0 runs control plane; each guestOS runs in its own domain/VM

User User User
Software Software Software

GuestOS GuestOS GuestOS
(XenoLinux) (XenoBSD) (XenoXP)

Xe A Xe A Xe A
DGVICG DIIVGI’S Device Drivers Device Drivers Device Drivers

Domain0 yirtygl virtual vitual virtual | X
jcontrol xg5CPU phymem network blockdev E See Paper:
3 3 : Xen and art

of virtualization

University of
Massachusetts | CS677: Distributed OS Lec. 07
Ambherst

Part 3: Virtualizing Other Resources
Memory virtualization

e OS manages page tables
— Create new pagetable is sensitive -> traps to hypervisor
* hypervisor manages multiple OS
— Need a second shadow page table
— OS: VM virtual pages to VM’s physical pages
— Hypervisor maps to actual page in shadow page table
— Two level mapping
— Need to catch changes to page table (not privileged)
¢ Change PT to read-only - page fault
e Paravirtualized - use hypercalls to inform

University of
Massachusetts | CS677: Distributed OS Lec. 07
Amherst

I/O Virtualization
e Each guest OS thinks it “owns” the disk

* Hypervisor creates “virtual disks”

— Large empty files on the physical disk that appear as “disks” to the guest OS

* Hypervisor converts block # to file offset for I/O
— DMA need physical addresses

* Hypervisor needs to translate

e Stored as virtual disk or vmdk files

University of
Massachusetts | CS677: Distributed OS
Amherst

Lec. 07

5

Virtual Appliances & Multi-Core

* Virtual appliance: pre-configured VM with OS/ apps pre-installed
— Just download and run (no need to install/configure)
— Software distribution using appliances
e Multi-core CPUs
— Run multiple VMs on multi-core systems
— Each VM assigned one or more vCPU

— Mapping from vCPUs to physical CPUs

e Today: Virtual appliances have evolved into docker containers

University of
Massachusetts | CS677: Distributed OS
Amherst

Lec. 07

Use of Virtualization Today

¢ Data centers:
¢ server consolidation: pack multiple virtual servers onto a smaller number of physical server
 saves hardware costs, power and cooling costs
¢ Cloud computing: rent virtual servers
e cloud provider controls physical machines and mapping of virtual servers to physical hosts
¢ User gets root access on virtual server
¢ Desktop computing:
¢ Multi-platform software development
¢ Testing machines

¢ Run apps from another platform

University of
Massachusetts | CS677: Distributed OS Lec. 07
Ambherst

Part 1: OS Virtualization

¢ Recall virtualization: use native interface to emulate another one
e Broader view of OS virtualization:
e OS interface (e.g., sys call interface) can emulate another OS interface

e E.g., Solaris zone can emulate older kernel version
e Modern view of OS virtualization

¢ OS paradigm where kernel allows multiple isolated user space instances
e Each instance looks like real machine running OS

e Qutside processes can see all resources; processes inside isolated instances
see a restricted set
University of

Massachusetts | CS677: Distributed OS Lec. 09
Amherst

OS Virtualization

* Emulate OS-level interface with native interface

¢ “Lightweight” virtual machines

* No hypervisor, OS provides necessary support

Solarls 10 - global zone

Container 1 Container 2 Container 3
A i i A i i — A i i -
\ J L

Host OS Kernel with virtualization layer | | | I I I I I\

Hardware Disk pc|e Memory
Hardware)

¢ Referred to as containers (“isolated set of processes”)

e Solaris containers, BSD jails, Linux containers

University of
Massachusetts | CS677: Distributed OS Lec. 09
Ambherst

9

Linux Containers (LXC)

e Containers share OS kernel of the host
* OS provides resource isolation
* Benefits

* Fast provisioning, bare-metal like performance, lightweight

App || App

|_sins /s | Container

Container Bins / libs
Operating System

Material courtesy of “Realizing
Russell, IBM
Type 1 Hypervisor Type 2 Hypervisor Linux Containers
University of
Massachusetts | CS677: Distributed OS Lec. 09
Ambherst

10

OS Mechanisms for LXC

¢ OS mechanisms for resource isolation and management

* namespaces: process-based resource isolation

Cgroups: limits, prioritization, accounting, control

chroot: apparent root directory

* Linux security module, access control

Tools (e.g., docker) for easy management

University of
Massachusetts | CS677: Distributed OS
Ambherst

Lec. 09

11

Linux Namespaces

* Namespace: restrict what can a container see?

* Provide process level isolation of global resources

Processes have illusion they are the only processes in the system

MNT: mount points, file systems (what files, dir are visible)?

PID: what other processes are visible?

NET: NICs, routing

Users: what uid, gid are visible?

» chroot: change root directory

University of
Massachusetts | CS677: Distributed OS
Amherst

Lec. 09

12

Linux cgroups

* Resource isolation
» what and how much can a container use?
¢ Set upper bounds (limits) on resources that can be used
¢ Fair sharing of certain resources
e Examples:
e cpu: weighted proportional share of CPU for a group
¢ cpuset: cores that a group can access
« block io: weighted proportional block 10 access
e memory: max memory limit for a group

Without CPU Core Pinning

‘With CPU Core Pinning

==== http-be ... I http-be (core 0)
b: ea== - |HEEN - -
ge ==-= ® rabbit-ixc rlbbi\»ll: (:: 1215)
o aall BEEE
University of
Massachusetts | CS677: Distributed OS lec.09 13
Ambherst
13
Putting it all together
¢ Images: files/data for a container
e can run different distributions/apps on a host
¢ Linux security modules and access control
¢ Linux capabilities: per process privileges
University of
Massachusetts | CS677: Distributed OS lec.09 14
Amherst

14

Part 2: Proportional Share Scheduling

e Proportional-share scheduling: allocate a fraction (“slice/share”) of the resource
* allocate CPU capacity to containers, VM, or a process
» allocate network bandwidth to an application, container
» Share-based scheduling:
» Assign each process a weight w_i (a “share”)
* Allocation is in proportional to share
« fairness: reused unused cycles to others in proportion to weight
» Examples: fair queuing, start time fair queuing

e Hard limits: assign upper bounds (e.g., 30%), no reallocation

University of
Massachusetts | CS677: Distributed OS Lec. 09 15
Ambherst

15

Weighted Fair Queuing (WFQ)

¢ One of the original proportional share schedulers
« Each process /container assigned a weight w;

. each receives w/ Y w, fraction of resource

J
« OS keep a counter for each process s;

¢ Tracks how much CPU service the process has received

. After each quantum, s; = s, + 4 where g is quantum length
i

 Scheduler schedules task with min s;

¢ what happens when process blocks: accumulates “credit” and can starve others
Track =mi = el
. Track s, = min(s;,s,,..) and s; = max(s,,;,, S; + ;)
i
University of

Massachusetts | CS677: Distributed OS Lec. 09 16
Amherst

16

Share-based Schedulers

From paolo <>
Subject [PATCH RFC RESEND 00/14] New version of the BFQ I/O Scheduler
Date Tue, 27 May 2014 14:42:24 +0200

From: Paolo Valente <paolo.valente@unimore.it>

[Re-posting, previous attempt seems to have partially failed]

Hi,

this patchset introduces the last version of BFQ, a proportional-share
storage-I/0 scheduler. BFQ also supports hierarchical scheduling with
a cgroups interface. The first version of BFQ was submitted a few

rmmme A P Te Al At A, e i S U B B e

[PATCH RFC 00/22] Replace the CFQ 1I/0 Scheduler with BFQ

From: Paolo Valente
Date: Mon Feb 01 2016 - 17:50:39 EST

o Next message: Panlo Valente: "IPATCH RFEC 03/221 hlack. cfa: remave deen seek anenes logic"

T2 instances’ baseline performance and ability to burst are governed by CPU Credits. Each T2 instance receives CPU Credits
continuously, the rate of which depends on the instance size. T2 instances accrue CPU Credits when they are idle, and use CPU credits
when they are active. A CPU Credit provides the performance of a full CPU core for one minute.

University of
Massachusetts | CS677: Distributed OS Lec. 09
Ambherst

17

Docker

* Linux containers are a set of kernel features
* Need user space tools to manage containers
* Virtuozo, OpenVZm, VServer,Lxc-tools, Docker
* What does Docker add to Linux containers?
e Portable container deployment across machines
* Application-centric: geared for app deployment
» Automatic builds: create containers from build files
e Component re-use

* Docker containers are self-contained: no dependencies

University of
Massachusetts | CS677: Distributed OS Lec. 09
Ambherst

18

18

Docker

¢ Docker uses Linux containers

CLl REST APL Dockerfiles

&y

BT Container

Container

docker
Container
L)

Container

Operating System

Operating System

Hardware Hardware Hardware

Type 1 Hypervisor Linux Containers docker

University of
Massachusetts | CS677: Distributed OS lec.09 19
Ambherst

19

LXC Virtualization Using Docker

» Portable: docker images run anywhere docker runs
* Docker decouples LXC provider from operations

e uses virtual resources (LXC virtualization)

* fair share of physical NIC vs use virtual NICs that are fair-shared

Non-Virtual

+ Large appicion pothe - costy

Logical Operatces / Abstractons &
o .

* Tiht caupirg Broughout -k of

Decoupled

Substrase

— Native Interfaces
. - a0l ™ || |+ Temorcstens s - 4=
SN P = g \ j i A
+ Spen : o

Native Resource * B Native Resource
University of

Massachusetts | CS677: Distributed OS Lec. 09 20
Amherst

20

Docker Images and Use

» Docker uses a union file system (AuFS)
» allows containers to use host FS safely
» Essentially a copy-on-write file system
» read-only files shared (e.g., share glibc)
* make a copy upon write
¢ Allows for small efficient container images
* Docker Use Cases
* “Run once, deploy anywhere”
* Images can be pulled/pushed to repository

» Containers can be a single process (useful for microservices) or a full OS

University of
Massachusetts | CS677: Distributed OS lec.09 21
Amherst
21
| |
Case Study: PlanetLab
¢ Distributed cluster across universities
» Used for experimental research by students and faculty in networking and distributed systems
¢ Uses a virtualized architecture
¢ Linux Vservers
* Node manager per machine
* Obtain a “slice” for an experiment: slice creation service
User-assigned Priviliged management
virtual machines virtual machines
o S 1 sl T e e e B e B
o o o o o o
Vserver Vserver Vserver Vserver Vserver
Linux enhanced operating system
Hardware
University of
Massachusetts | CS677: Distributed OS Lec. 09 22
Ambherst

22

