
CS677: Distributed OS Lec. 09

OS Virtualization

• Part 1: OS Virtualization

• Part 2: Fair share allocation

• Part 3: Docker and linux containers

1

1

CS677: Distributed OS Lec. 07

Paravirtualization

• Both type 1 and 2 hypervisors work on unmodified OS

• Paravirtualization: modify OS kernel to replace all sensitive instructions with hypercalls

– OS behaves like a user program making system calls

– Hypervisor executes the privileged operation invoked by hypercall.

2

2

CS677: Distributed OS Lec. 07

Xen Hypervisor
• Linux Type 1 hypervisor with no special hardware support

• Requires modified kernel, but can run unmodified apps

• Dom-0 runs control plane; each guestOS runs in its own domain/VM

3

See Paper:

Xen and art

of virtualization

3

CS677: Distributed OS Lec. 07

Part 3: Virtualizing Other Resources
Memory virtualization
• OS manages page tables

– Create new pagetable is sensitive -> traps to hypervisor

• hypervisor manages multiple OS

– Need a second shadow page table

– OS: VM virtual pages to VM’s physical pages

– Hypervisor maps to actual page in shadow page table

– Two level mapping

– Need to catch changes to page table (not privileged)

• Change PT to read-only - page fault

• Paravirtualized - use hypercalls to inform

4

4

CS677: Distributed OS Lec. 07

I/O Virtualization
• Each guest OS thinks it “owns” the disk

• Hypervisor creates “virtual disks”

– Large empty files on the physical disk that appear as “disks” to the guest OS

• Hypervisor converts block # to file offset for I/O

– DMA need physical addresses

• Hypervisor needs to translate

• Stored as virtual disk or vmdk files

5

5

CS677: Distributed OS Lec. 07

Virtual Appliances & Multi-Core
• Virtual appliance: pre-configured VM with OS/ apps pre-installed

– Just download and run (no need to install/configure)

– Software distribution using appliances

• Multi-core CPUs

– Run multiple VMs on multi-core systems

– Each VM assigned one or more vCPU

– Mapping from vCPUs to physical CPUs

• Today: Virtual appliances have evolved into docker containers

6

6

CS677: Distributed OS Lec. 07

Use of Virtualization Today
• Data centers:

• server consolidation: pack multiple virtual servers onto a smaller number of physical server

• saves hardware costs, power and cooling costs

• Cloud computing: rent virtual servers

• cloud provider controls physical machines and mapping of virtual servers to physical hosts

• User gets root access on virtual server

• Desktop computing:

• Multi-platform software development

• Testing machines

• Run apps from another platform

7

7

CS677: Distributed OS Lec. 09

Part 1: OS Virtualization
• Recall virtualization: use native interface to emulate another one

• Broader view of OS virtualization:

• OS interface (e.g., sys call interface) can emulate another OS interface

• E.g., Solaris zone can emulate older kernel version
• Modern view of OS virtualization

• OS paradigm where kernel allows multiple isolated user space instances

• Each instance looks like real machine running OS

• Outside processes can see all resources; processes inside isolated instances
see a restricted set

8

8

CS677: Distributed OS Lec. 09

 OS Virtualization
• Emulate OS-level interface with native interface

• “Lightweight” virtual machines

• No hypervisor, OS provides necessary support

• Referred to as containers (“isolated set of processes”)

• Solaris containers, BSD jails, Linux containers

9

9

CS677: Distributed OS Lec. 09

Linux Containers (LXC)
• Containers share OS kernel of the host

• OS provides resource isolation

• Benefits

• Fast provisioning, bare-metal like performance, lightweight

10

Material courtesy of “Realizing
Linux Containers” by Boden

Russell, IBM

10

CS677: Distributed OS Lec. 09

OS Mechanisms for LXC
• OS mechanisms for resource isolation and management

• namespaces: process-based resource isolation

• Cgroups: limits, prioritization, accounting, control

• chroot: apparent root directory

• Linux security module, access control

• Tools (e.g., docker) for easy management

11

11

CS677: Distributed OS Lec. 09

Linux Namespaces
• Namespace: restrict what can a container see?

• Provide process level isolation of global resources

• Processes have illusion they are the only processes in the system

• MNT: mount points, file systems (what files, dir are visible)?

• PID: what other processes are visible?

• NET: NICs, routing

• Users: what uid, gid are visible?

• chroot: change root directory

12

12

CS677: Distributed OS Lec. 09

Linux cgroups
• Resource isolation

• what and how much can a container use?

• Set upper bounds (limits) on resources that can be used

• Fair sharing of certain resources

• Examples:

• cpu: weighted proportional share of CPU for a group

• cpuset: cores that a group can access

• block io: weighted proportional block IO access

• memory: max memory limit for a group

13

13

CS677: Distributed OS Lec. 09

Putting it all together
• Images: files/data for a container

• can run different distributions/apps on a host

• Linux security modules and access control

• Linux capabilities: per process privileges

14

14

CS677: Distributed OS Lec. 09

Part 2: Proportional Share Scheduling
• Proportional-share scheduling: allocate a fraction (“slice/share”) of the resource

• allocate CPU capacity to containers, VM, or a process

• allocate network bandwidth to an application, container

• Share-based scheduling:

• Assign each process a weight w_i (a “share”)

• Allocation is in proportional to share

• fairness: reused unused cycles to others in proportion to weight

• Examples: fair queuing, start time fair queuing

• Hard limits: assign upper bounds (e.g., 30%), no reallocation

15

15

CS677: Distributed OS Lec. 09

Weighted Fair Queuing (WFQ)
• One of the original proportional share schedulers

• Each process /container assigned a weight

• each receives fraction of resource

• OS keep a counter for each process

• Tracks how much CPU service the process has received

• After each quantum, where q is quantum length

• Scheduler schedules task with min

• what happens when process blocks: accumulates “credit” and can starve others

• Track and

wi

wi /∑
j

wj

si

si = si +
q
wi

si

smin = min(s1, s2, . .) si = max(smin, si +
q
wi

)

16

16

CS677: Distributed OS Lec. 09

Share-based Schedulers

17

17

CS677: Distributed OS Lec. 09

Docker
• Linux containers are a set of kernel features

• Need user space tools to manage containers

• Virtuozo, OpenVZm, VServer,Lxc-tools, Docker

• What does Docker add to Linux containers?

• Portable container deployment across machines

• Application-centric: geared for app deployment

• Automatic builds: create containers from build files

• Component re-use

• Docker containers are self-contained: no dependencies

18

18

CS677: Distributed OS Lec. 09

Docker

• Docker uses Linux containers

19

19

CS677: Distributed OS Lec. 09

LXC Virtualization Using Docker
• Portable: docker images run anywhere docker runs

• Docker decouples LXC provider from operations

• uses virtual resources (LXC virtualization)

• fair share of physical NIC vs use virtual NICs that are fair-shared

20

20

CS677: Distributed OS Lec. 09

Docker Images and Use
• Docker uses a union file system (AuFS)

• allows containers to use host FS safely

• Essentially a copy-on-write file system

• read-only files shared (e.g., share glibc)

• make a copy upon write

• Allows for small efficient container images

• Docker Use Cases

• “Run once, deploy anywhere”

• Images can be pulled/pushed to repository

• Containers can be a single process (useful for microservices) or a full OS

21

21

CS677: Distributed OS Lec. 09

Case Study: PlanetLab
• Distributed cluster across universities

• Used for experimental research by students and faculty in networking and distributed systems

• Uses a virtualized architecture

• Linux Vservers

• Node manager per machine

• Obtain a “slice” for an experiment: slice creation service

22

22

